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SYNOPSIS 

Analytical expressions of shear stress evolution for arbitrary transient flows are obtained, 
based on a rate-dependent network (RDN) model as well as on a nonaffine network (NAN) 
model. Predictions of both models are evaluated for various step histories against experi- 
mental results on linear and branched polyethylene melts (LDPE and HDPE). Agreement 
with experiments justifies the usefulness of the computed stress functions regarding the 
predictions of shear responses in melt processing. A slow transient process is more adequately 
simulated by an NAN model than by an RDN model. The very slow reentanglement process 
following cessation of flow is poorly described by either model. This fact implies that ad- 
ditional relaxation mechanisms are involved. In the linear viscoelasticity of small defor- 
mation, elastic relaxation occurs. In processes involving large shear rates, additional pa- 
rameters are needed to account for the structural changes accompanying the relaxation 
process. 0 1995 John Wiley & Sons, Inc. 
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Polymer melts are often assumed to have an entan- 
gled network structure. The modern concept of en- 
tanglement-topological constraints of chain con- 
tour tubes-leads to the reptation model of Doi and 
Edwards; the constitutive equation of this model 
takes the form of the K-BKZ equation.' In the K- 
BKZ equation, the stress is given in terms of the 
history of the strain only. It has been observed that 
in large and complex step flows the experimental 
results differ significantly from those predicted by 
the K-BKZ These large transient de- 
formations are severe tests for constitutive equa- 
t i o n ~ . ~  In these flows, irreversible molecular pro- 
cesses are present and it might not be sufficient to 
consider the strain tensor only. The structural 
change of the network might depend on the shear 
as well as on the shear rate. Oldroyd pointed out 
that in flows that are subjected to a sudden change 
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of stress or rate-of-strain the state of the stress does 
not depend on the strain tensor only.6 It is desirable 
to include in the constitutive equation the history 
of the strain as well as that of the rate-of-strain. 

We start with a constitutive equation for finite 
viscoelasticity, which may be written as 

T = -PI + m ( t  - t ' ) G ( t ,  t ' )  dt' (1) L 
where T is the stress tensor; p ,  the isotropic pressure; 
I ,  the unit tensor; t ,  the present time; m, the memory 
function, and G = C;' - I ,  where C;' is the relative 
Finger tensor. 

The finite linear viscoelastic fluid predicts a con- 
stant shear viscosity and a zero secondary normal 
stress coefficient. To improve the model, we intro- 
duce a function of shear rate in eq. ( 1). By consid- 
ering a network model in which the rate of change 
of network junctions depends on the shear rate, 
Carreau showed that the memory function in eq. 
(1) is a function of the invariants of the rate-of- 
  train.^ This model, known as the rate-dependent 
network (RDN) model, can predict the viscosity 
function and the primary normal stress coefficient 
successfully. 
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An alternative approach is to allow slip to occur. 
Johnson and Segalman considered two corotational 
frames of reference? One can be associated with the 
microstructure and the other with the macrostruc- 
ture. By allowing nonaffine deformation between the 
two frames, they showed that the Finger tensor in 
eq. (1) has to be replaced by a generalized strain. A 
similar result is obtained by dropping the indepen- 
dent alignment in the Doi-Edwards  model.'^^ This 
model will be referred to as the nonaffine network 
(NAN) model. 

These two approaches are not identical. We com- 
pared the shear stress responses of the two models 
for various forms of multi-rate-step flows. The pre- 
diction of shear stress in transient flows involving 
complex large strain and strain-rate histories is use- 
ful for many polymer processing operations, such as 
injection molding. Also, the comparison of model 
predictions with typical data for such complex de- 
formation histories allows one to observe, e.g., that 
the shear history may drastically change the rheo- 
logical properties. The preshearing effect reduces the 
melt elasticity as well as the viscosity in subsequent 
melt-forming operations. This “shear modification” 
can be used to improve melt processability. The 
mechanism associated with this effect can be at- 
tributed to a reentanglement time of the melt net- 
work. By using interrupted steps, it has been ob- 
served that the reentanglement time is much larger 
than is the characteristic time of the stress relaxa- 
tion following steady flows. This may imply the ex- 
istence of a kinetic mechanism related to entangle- 
ment evolution, in addition to the stress evolution 
due to linear viscoelasticity. In this article, we com- 
pare the experimental results on LDPE (El) and 
HDPE (E2) with the theoretical predictions. 

EQUATIONS OF SHEAR STRESS 

We calculate the stress for a multi-rate-step history, 
as illustrated in Figure 1, for the two fluids men- 
tioned earlier. 

Rate-dependent Network (RDN) Model 

The constitutive equation is given by 

7 = -PI + m[t  - t’, I I ( t ,  t ’ ) ] G ( t ,  t’)  dt‘ (2)  L 
We adopt the memory function proposed by De Kee 
and it can be written aslo 

I I  I I  I 1  I I 1 
‘I ‘2‘3 tk-l ‘k 1, 

T I M E  (11 

Figure 1 Multi-rate-step flow: + vs. t .  

m[ t - t’, n( t ,  t ’ ) ]  

In Eqs. ( 2 )  and (3a)- (3c), II is the second invariant 
of the rate-of-deformation tensor, and qp and A, are 
constants that have dimensions of viscosity and 
time, respectively. c is a dimensionless constant and 
we assume tp to be equal to A,. The dimensionless 
parameter f o  can be assumed to be equal to 1 in flows 
where the deformation is small. For large defor- 
mations, it can differ from 1. 

For the arbitrary multi-rate-step history shown 
in Figure 1, the shear stress T (  t )  at the present time 
is the sum of the stress contributions due to the 
deformations in past times. We divide the past times 
into intervals ( t k - 1 ,  t k ) ,  k = 0, 1, . . . , n. A constant 
shear rate + k  is applied in the interval ( tk-1, t k )  . We 
let t-l be --co , to be zero, and t, be the present time 
t .  T (  t )  can then be written as 

n 

(4) 
k=O 

where I k  is the contribution to ~ ( t )  due to the de- 
formation in the interval ( t k - 1 ,  t k )  and is given by 
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Nonaffine Network (NAN) 

The constitutive equation can be written as 

7 = -PI + G(t  - t’)E(t,  t’) l* 
X D*(t’)Et(t ,  t’) dt’ (6a) 

aE 
-- - A ( t ) .  E(t ,  t’), E(t’, t’) = I 
at (6d,e) 

A = L -  (1 - a ) D  ( 6 0  

L and D are the velocity gradient and the rate-of- 
deformation tensor, respectively, in the nonslipping 
frame. a is the slip parameter and is equal to 1 when 
there is no slip. 

The shear stress T( t )  is given by 

where S k  is the contribution to T (  t )  due to the de- 
formation imposed during the interval ( tk-1, tk) . 

It is shown in the Appendix that s k  is given by 

where 

MATERIALS AND CHARACTERIZATION 

The data on polyethylene (PE) (E l  ) -resin 10 (low- 
density polyethylene [ LPPE] ) and (E2) -resin 22 
(high-density polyethylene [ HDPE] ) are avail- 
able.” All rheological measurements for PE were 
performed at 443 K. 

The linear relaxation time spectra are obtained 
from the dynamic moduli G’ and G” by using 
Tschoegl’s second approximation. A set of discrete 
values of relaxation times A, and moduli Gp are se- 
lected from the continuous spectrum as listed in Ta- 
ble I. A, and Gp were used to calculate G’ and G” 
from the equations of a generalized Maxwell model. 

Some rheological data of the samples were pre- 
sented.” The qp values of the RDN model can be 
obtained as follows: 

EVALUATION OF MODELS USING 
COMPLEX TRANSIENT SHEARING 

Reduction in Shear Rate 

In this experiment, the fluid is subjected to a shear 
rate +l for a sufficiently long time such that the 
steady state is reached. The shear rate is then sud- 
denly reduced to y2 and is kept at this value for a 
long time. Finally, the sample is no longer sheared. 
The shear stress is measured all along. 

Dealy and Tsang reported data on this type of 
experiment on the E l  and E2 melts mentioned ear- 
lier.” They related their observations to the struc- 

Table I 
at 443 K 

Discrete Spectra for PE Samples 

Sample 

Relaxation Time E l  E2 
A, (s) G, (Pa) Gp (Pa) 

0.00316 20954 
0.01 15895 31715 

11783 26379 0.0316 
0.1 8342 19782 
0.316 5386 13221 
1.0 3245 7966 
3.16 1703 4086 

10.0 797.6 1703 
31.6 317.2 590.6 

100.0 8.54 166.5 
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Figure 2 Stress growth, reduction in shear rate, = 0.64 s-', = 0.258 s - ' ) ,  and 
stress relaxation curves for the E l  melt. The experimental data are from Tsang." The 
broken line represents the prediction of the RDN model ( c  = 1.5 and fo = 1.48). The solid 
line is that of the NAN model (a = 0.994 ) . The material parameters are given in Table I. 

ture rebuilding following the reduction in shear rate. 
They compared their data with the predictions of 
the Acierno et al. and Phan-Thien and Tanner 
 model^.'^^'^ 

Figure 2 shows qualitative between data and 
model predictions for the RDN and the NAN mod- 
els. To allow the NAN model to predict the data, it 
was necessary to multiply the Gp values by a constant 
factor of 1.65. Both models predict stress overshoot 
and undershoot in qualitative agreement with the 
experimental data. The magnitude of the stress 
overshoot and undershoot predicted by the NAN 
model is greater than the. experimentally observed 
one. For the RDN model, once the material param- 
eters have been chosen to fit the stress at +1, the pre- 
dicted stress for "/is higher than the measured one. 

Figure 3 shows the results for the HDPE (E2) 
sample. Qualitatively, they are similar to those 
shown in Figure 2. However, quantitatively, they 
are better. In Figure 2, the NAN model predicts 
stress oscillation that is not observed experimen- 
tally. This stress oscillation is due to the sin and cos 
terms in eq. (€$a), which is also associated with non- 
affine deformation. By considering only one mode 
and by a suitable choice of material parameters, it 
is possible to reduce the amplitude of the oscillation 
to such an extent that it becomes negligible. Thus, 
in Figure 3, we do not observe stress oscillation for 
the NAN model. We used two modes to calculate 
the stress for the RDN model and it can be seen 

that overall the predictions are in good agreement 
with the experimental data. 

In Figure 4, we replotted the experimental data 
given in Figure 2 with the predictions of the NAN 
model using only one mode. In this case, the cal- 
culated stress shows no oscillation and the agree- 
ment between the theoretical and experimental val- 
ues is better than that shown in Figure 2. 

We explored the effect of changing the values of 
a in the NAN model and the form of the spectrum 
in the RDN model. No significant change was ob- 
served. In all cases (Figs. 2-4), it is predicted that 
the stress attains its steady value from its maximum 
value in a time shorter than the one observed ex- 
perimentally. 

Interrupted Shear Flow 

In this experiment, a constant shear rate + is applied 
and maintained until the steady state is reached. 
The shearing is then stopped and the fluid is allowed 
to rest for a period t,. It is then sheared again at the 
same shear rate +. This process of shearing and 
resting for various values oft, is repeated. The max- 
imum value of the shear stress T,, which is a func- 
tion of t ,  is recorded. This is schematically shown 
in Figure 5. 

Stratton and Butcher suggested that such an ex- 
periment can be used to provide an estimate of the 
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Figure 3 = 0.258 s-l,  f 2  = 0.104 s-l) for the 
E2 melt. Comparison of measured data with predictions of the one-mode NAN model (G, 
= 14000 Pa, X1 = 8 s, a = 0.98) and the two-mode RDN model ( vl = qz = 38000 Pa-s, XI 
= 1 s, X2 = 10 s, c = 1.35). Solid line: NAN model; dotted line: RDN model. 

Stress evolution in a reduced step flow ( 

reentanglement time.16 We define the reduced stress 
recovery S, by 

a state of rest for an infinite period) and r, is the 
steady value of the shear stress. 

In Figure 6, we plotted the predicted and exper- 
imental values of S, as a function of t,. The exper- 
imental values are for the E2 sample." It can be 
seen that the agreement between the theoretical and 
experimental values is poor. A similar deviation was 
obtained by Dealy and Tsang." The present test 

7rn(m, i.1 - T r n ( t r ,  i.) 
7 r n ( a ,  i.) - ~ s ( i . 1  

s, = (lo) 

where 7, (co , r) is the maximum shear stress ini- 
tially (assuming that initially the fluid has been in 
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Figure 4 
mode NAN model ( GI = 7400 Pa, X1 = 5 s, a = 0.993). Experimental data as in Figure 2. 

Stress evolution in reduced shear step for the E l  melt. Comparison with the one- 
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highlights the discrepancy observed earlier, which 
is that the time taken for the stress to reach its 
steady value is predicted to be shorter than the ob- 
served one. 

are too narrow. This may be attributed to the rel- 
atively sharp exponential rate dependence. The 
NAN model yields a better quantitative response 
but predicts oscillatory behavior. This problem can 
be eliminated by a suitable choice of one relaxation 
mode. The stress relaxation following cessation of 
flow becomes realistic when the slip factor a is unity. 
The transient response at given shear rate is not 
sensitive to the whole spectrum. The prediction of 

CONCLUSIONS 

The RDN model predicts the transient properties 
qualitatively. The relaxation is too fast and the peaks 
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both models cannot substantially be improved by 
broadening the spectrum. Also, the change of spec- 
trum is limited by the predictions of the steady flow 
curves. 

The slip factor seems to play an important role 
in the nonlinear response. The predicted oscillations 
are most likely due to the tumbling of the flow units 
in the shear field.g But the fact that a single mode 
rather than a broad spectrum can dampen the os- 
cillations implies that the reasons for the oscillations 
might not be fully understood. 

The interrupted flow experiment represents a 
critical test for the entanglement dynamics. The 
predicted value of the reentanglement time is about 
one decade lower than the measured one. The dis- 
crepancy is not so severe in the case of noninter- 
rupted shear steps. This implies that there exists 
some mechanism of reentanglement that has not 
been considered in the current models. 

T = “s’ G(t  - tr)+(t’)cos(2[a) dt’ (A.4a) 
2 -00 

where 

[=G2 (A.4b) 

u = 1; + dt” ( A.4c ) 

S k  is the contribution to ~ ( t )  due to the imposed 
shear rate j /k  in the interval tk-, < t < tk and can be 
written as 

D. De Kee wishes to acknowledge financial support from 
the Natural Sciences and Engineering Research Council 
of Canada. Also, the award of an NSERC International 
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APPENDIX 

The velocity distribution for a simple shear flow is 
given by 

v, = +x, ,  v, = v3 = 0 (A.1) 

The tensors A and D * are given by [ eqs. (6c) and 
(6f) 1 

A = + O  [I 0 I] 0 -- :] (A.3) 
0 0 0  

From eqs. (6d) and (6e),  we can obtain E, which 
is substituted in eq. (6a) to obtain an expression for 
the stress 7 .  It is found that the shear stress T( t )  is 
given by 

and ak is the value of a in the interval tk-1 < t < tk+l. 
Substituting eq. (6b) into eq. (A4a) and making use 
of the formula 

e’l’cos bx dx 

ear 
a 2  + b2 

- -- ( a  cos bx + b sin x )  (A.6) 

we obtain eq. (8a) .  
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